Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.028
Filtrar
1.
BMC Ecol Evol ; 24(1): 52, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654171

RESUMEN

BACKGROUND: The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these two regions. RESULTS: Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution. CONCLUSIONS: Our results suggested that the from west to east long migration accompanying with the minor short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related ecological niches and migration influences.


Asunto(s)
Filogeografía , China , ADN de Cloroplastos/genética , Análisis de Secuencia de ADN , Variación Genética/genética , Filogenia , Tibet , Evolución Molecular , ADN de Plantas/genética
2.
Mol Biol Rep ; 51(1): 534, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642172

RESUMEN

BACKGROUND: Thymus algeriensis Boiss. et Reut. is one of the most widespread North African species of the genus Thymus L. The species is subshrub growing primarily in subtropical biome of Morocco, Algeria, Tunisia and Libya. In Tunisia, the plant species is under high pressure of anthropogenic activities including over-collecting. The assessment of genetic diversity and population structure of T. algeriensis is a pioneer step to retrace its evolutionary history and to perform appropriate conservation strategies of the plant species. METHODS AND RESULTS: Seven wild populations growing, widely, in different bioclimatic zones were selected and analysed using two molecular markers systems. Fifteen Simple Sequence Repeats (SSRs) and fifteen Inter-Simple Sequence Repeats (ISSRs) were used to characterize genetically 140 different genotypes. The results showed a high molecular variation within populations and among the studied genotypes. The intra-populations genetic diversity revealed by SSRs was higher (P = 80.95%, Na = 2.143 and He = 0.364) than that based on ISSRs (P = 78.12%, Na = 1.632, He = 0.265 and I = 0.398). As demonstrated by inbreeding coefficients, a significant level of differentiation and a low level of gene flow were detected among studied populations (FST = 0.161 for SSRs and ΦST = 0.197 for ISSRs). Furthermore, the results of ISSRs marker suggest land strips as barriers in population genetic structure. While SSRs marker reflects a relatively structured bioclimatic patterns of studied populations. The Bayesian analysis showed a specific adaptation of populations to local environments. CONCLUSIONS: The used molecular markers (ISSRs and SSRs) seem to be effective in deciphering genetic polymorphism of Tunisian genotypes of T. algeriensis. Therefore, the genetic structure of the studied genotypes could constitute a starting point for further conservation, characterization and breeding programs.


Asunto(s)
Variación Genética , Pueblo Norteafricano , Humanos , Variación Genética/genética , Teorema de Bayes , Polimorfismo Genético/genética , Biomarcadores , Repeticiones de Microsatélite/genética
3.
An Acad Bras Cienc ; 96(3): e20230474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655921

RESUMEN

The Pacific Oyster was introduced on Santa Catarina Island in 1987, experiencing processes of selection and genetic breeding since then. Such procedures may have led to the establishment of specific strains, given the saltier and warmer conditions of the Atlantic Ocean. This study employed microsatellite markers to compare allelic patterns of oysters cultivated in Santa Catarina, the USA, and Asia. Specific allelic patterns were revealed in the Santa Catarina samples, reflecting the time of selection/breeding of the oyster in this region. This result supports the effectiveness of the selection/breeding procedures and the demand for protection of this commercially important genetic resource.


Asunto(s)
Crassostrea , Variación Genética , Repeticiones de Microsatélite , Repeticiones de Microsatélite/genética , Animales , Crassostrea/genética , Crassostrea/clasificación , Brasil , Variación Genética/genética , Cruzamiento , Alelos
4.
Acta Neuropathol ; 147(1): 70, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598053

RESUMEN

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Asunto(s)
Enfermedad de Alzheimer , Fibronectinas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/genética , Fibronectinas/genética , Variación Genética/genética , Gliosis , Pez Cebra
5.
PeerJ ; 12: e17248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666077

RESUMEN

Whereas undetected species contribute to estimation of species diversity, undetected alleles have not been used to estimated genetic diversity. Although random sampling guarantees unbiased estimation of allele frequency and genetic diversity measures, using undetected alleles may provide biased but more precise estimators useful for conservation. We newly devised kernel density estimation (KDE) for allele frequency including undetected alleles and tested it in estimation of allele frequency and nucleotide diversity using population generated by coalescent simulation as well as well as real population data. Contrary to expectations, nucleotide diversity estimated by KDE had worse bias and accuracy. Allele frequency estimated by KDE was also worse except when the sample size was small. These might be due to finity of population and/or the curse of dimensionality. In conclusion, KDE of allele frequency does not contribute to genetic diversity estimation.


Asunto(s)
Alelos , Frecuencia de los Genes , Variación Genética , Variación Genética/genética , Humanos , Modelos Genéticos , Simulación por Computador , Genética de Población/métodos
6.
Mol Biol Rep ; 51(1): 378, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427103

RESUMEN

BACKGROUND: The Ganga River System (GRS) is a biodiversity hotspot, its ecological richness is shaped by a complex geological history. In this study, we examined the genetic diversity, spatial connectivity, and population structure of the Asian Silurid catfish, Wallago attu, across seven tributaries of the GRS. METHODS AND RESULTS: We employed three mitochondrial DNA (mtDNA) regions: cytochrome c oxidase subunit I (COXI), cytochrome b (Cyt b), and control region (CR). Our comprehensive dataset encompassed 2420 bp of mtDNA, derived from 176 W. attu individuals across 19 sampling sites within the seven rivers of GRS. Our findings revealed high gene diversity (Hd:0.99) within W. attu populations. Analysis of Molecular Variance (AMOVA) highlighted that maximum genetic variations were attributed within the populations, and the observed genetic differentiation among the seven populations of W. attu ranged from low to moderate. Network analysis uncovered the presence of three distinct genetic clades, showing no specific association with seven studied rivers. Bayesian skyline plots provided insights into the demographic history of W. attu, suggesting a recent population expansion estimated to have occurred approximately 0.04 million years ago (mya) during the Pleistocene epoch. CONCLUSIONS: These results significantly enhance our understanding of the genetic diversity and spatial connectivity of W. attu, serving as a vital foundation for developing informed conservation strategies and the sustainable management of this economically valuable resource within the Ganga River System.


Asunto(s)
Bagres , Ríos , Humanos , Animales , ADN Mitocondrial/genética , Bagres/genética , Teorema de Bayes , Variación Genética/genética , Filogenia , Genética de Población
7.
Mol Biol Rep ; 51(1): 397, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453728

RESUMEN

BACKGROUND: The white teatfish, Holothuria fuscogilva, is widely distributed in coastal areas, including waters around coral reefs and seagrasses in the Indo-Pacific. In Kenya, the species is distributed in shallow reefs with higher landings reported from the Vanga-Shimoni-Gazi seascape on the Kenyan south coast. Despite its high exploitation for export and its vulnerable and endangered statuses under IUCN and CITES respectively, Kenya's H. fuscogilva populations and how they may have been impacted by the fishing pressure have not been studied. METHODS: We estimated the genetic diversity and structure of H. fuscogilva population conveniently sampled from three sites in Kenyan south coast using the mitochondrial cytochrome oxidase subunit I (COI) gene sequences. We recorded 30 haplotypes with 43 polymorphic sites across the population. Furthermore, we estimated an overall high haplotype diversity and low nucleotide diversity of estimates of h = 0.970 ± 0.013 and π = 0.010 ± 0.001 respectively. CONCLUSIONS: These preliminary findings suggest several population outcomes, among them a fit population, which require confirming with more comprehensive study to inform strategies for the sustainable exploitation and management of the species.


Asunto(s)
Holothuria , Animales , Holothuria/genética , Kenia , Variación Genética/genética , Genética de Población , Genes Mitocondriales , Haplotipos/genética , ADN Mitocondrial/genética
8.
Alzheimers Dement ; 20(4): 2794-2816, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426371

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS: We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS: Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION: Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS: Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Ratones , Humanos , Femenino , Animales , Enfermedad de Alzheimer/patología , Placa Amiloide/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Variación Genética/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo
9.
Mol Ecol ; 33(8): e17316, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38481075

RESUMEN

Eco-phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species-specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co-distributed saltmarsh sparrow species differing along a specialization gradient-Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco-phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity and Ne rather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long-term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist-generalist status and support the role of an eco-phylogeographic approach in population and conservation genetics.


Asunto(s)
Gorriones , Animales , Gorriones/genética , Ecosistema , Humedales , Evolución Biológica , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética
10.
Genes (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540379

RESUMEN

Toona ciliata is a deciduous or semi-deciduous tree species and belongs to the Toona genus of the Meliaceae family. Owing to low natural regeneration and over-exploitation, the species is listed as an endangered species at level II in China and its conservation has received increasing concern. Here, we sampled 447 individuals from 29 populations across the range-wide distribution of the T. ciliata complex in China and assessed their genetic variation using two chloroplast DNA markers. The results showed that the overall haplotype diversity and nucleotide diversity per site were high at h = 0.9767 and π = 0.0303 for the psbA-trnH fragment and h= 0.8999 and π = 0.0189 for the trnL-trnL fragment. Phylogenetic analysis supported the division of the natural distribution of T. ciliata complex into western and eastern regions. The genetic diversity was higher in the western region than in the eastern region, showing significant phylogeographic structure. Genetic differentiation among populations was moderate (Φst=42.87%), and the effects of isolation by distance (IBD) were significant. A neutrality test and mismatch distribution analysis indicated that the distribution of the T. ciliata complex generally did not expand, although a few local populations could likely expand after bottleneck effects. The overall results were complementary to and consolidated previous studies using mitochondrial and nuclear DNA markers. We finally discussed strategies for the genetic conservation of the T. ciliata complex.


Asunto(s)
Meliaceae , Humanos , Meliaceae/genética , Toona/genética , ADN de Cloroplastos/genética , Variación Genética/genética , Filogenia , Marcadores Genéticos
11.
Genes (Basel) ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540438

RESUMEN

Beta adrenergic receptor antagonists, known as beta blockers, are one of the most prescribed medications in both pediatric and adult cardiology. Unfortunately, most of these agents utilized in the pediatric clinical setting are prescribed off-label. Despite regulatory efforts aimed at increasing pediatric drug labeling, a majority of pediatric cardiovascular drug agents continue to lack pediatric-specific data to inform precision dosing for children, adolescents, and young adults. Adding to this complexity is the contribution of development (ontogeny) and genetic variation towards the variability in drug disposition and response. In the absence of current prospective trials, the purpose of this comprehensive review is to illustrate the current knowledge gaps regarding the key drivers of variability in beta blocker drug disposition and response and the opportunities for investigations that will lead to changes in pediatric drug labeling.


Asunto(s)
Antagonistas Adrenérgicos beta , Variación Genética , Niño , Humanos , Adolescente , Adulto Joven , Antagonistas Adrenérgicos beta/uso terapéutico , Variación Genética/genética
12.
Anim Biotechnol ; 35(1): 2329106, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38497403

RESUMEN

This study analysed the genetic diversity and population structure of eight sheep breeds in Turkey and nearby countries. Moderate genetic diversity was observed, with the Sakiz (SKZ) exhibiting the highest diversity based on heterozygosity and allelic richness (AR) values. Genetic distances revealed differentiation between the populations, with the most significant divergence between the Cyprus Fat Tail (CFT) and SKZ breeds. PCA demonstrated SKZ and Chios (CHI) clustering together, indicating genetic similarity. Karakas (KRS), Norduz (NDZ), Afshari (AFS), Moghani (MOG) and others showed overlap, reflecting genetic relationships. Ancestry analysis found that KRS was predominantly inherited from the second ancestral population, while SKZ and NDZ were primarily derived from the first and second ancestral lineages. This illustrated the populations' diverse origins. Most genetic variation (96.84%) was within, not between, populations. The phi-statistic (PhiPT) indicated moderate differentiation overall. Phylogenetic analysis further demonstrated the genetic distinctiveness of the SKZ breed. ROH and FROH analyses showed that SKZ exhibited the highest homozygosity and inbreeding, while KRS displayed the lowest. This study elucidates these breeds' genetic diversity, structure and relationships. Key findings include moderate diversity, evidence of differentiation between breeds, diverse ancestral origins and distinct ROH patterns. This provides insights into the population's genetic characteristics and conservation requirements.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Filogenia , Polimorfismo de Nucleótido Simple/genética , Turquia , Endogamia , Variación Genética/genética
13.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514782

RESUMEN

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Encéfalo/metabolismo , Sitios de Carácter Cuantitativo/genética , Variación Genética/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
14.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537634

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Asunto(s)
Genoma , Genómica , Ratas , Animales , Genoma/genética , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , Variación Genética/genética
15.
Biosystems ; 238: 105176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479654

RESUMEN

To concisely describe how genetic variation, at individual loci or across whole genomes, changes over time, and to follow transitory allelic changes, we introduce a quantity related to entropy, that we term pseudoentropy. This quantity emerges in a diffusion analysis of the mean time a mutation segregates in a population. For a neutral locus with an arbitrary number of alleles, the mean time of segregation is generally proportional to the pseudoentropy of initial allele frequencies. After the initial time point, pseudoentropy generally decreases, but other behaviours are possible, depending on the genetic diversity and selective forces present. For a biallelic locus, pseudoentropy and entropy coincide, but they are distinct quantities with more than two alleles. Thus for populations with multiple biallelic loci, the language of entropy suffices. Then entropy, combined across loci, serves as a concise description of genetic variation. We used individual based simulations to explore how this entropy behaves under different evolutionary scenarios. In agreement with predictions, the entropy associated with unlinked neutral loci decreases over time. However, deviations from free recombination and neutrality have clear and informative effects on the entropy's behaviour over time. Analysis of publicly available data of a natural D. melanogaster population, that had been sampled over seven years, using a sliding-window approach, yielded considerable variation in entropy trajectories of different genomic regions. These mostly follow a pattern that suggests a substantial effective population size and a limited effect of positive selection on genome-wide diversity over short time scales.


Asunto(s)
Drosophila melanogaster , Variación Genética , Animales , Variación Genética/genética , Drosophila melanogaster/genética , Densidad de Población , Frecuencia de los Genes , Alelos , Selección Genética , Genética de Población , Modelos Genéticos
16.
Trends Genet ; 40(4): 296-298, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462400

RESUMEN

Heikkinen and colleagues recently demonstrated that genetic variation, rather than dietary changes, governs gene regulation in liver. This finding highlights the impact of noncoding variants on chromatin accessibility, histone modifications, transcription factor binding, and gene expression and has implications for future research directions in understanding the genetic basis of disease.


Asunto(s)
Cromatina , Regulación de la Expresión Génica , Humanos , Regulación de la Expresión Génica/genética , Cromatina/genética , Código de Histonas , Obesidad/genética , Variación Genética/genética
17.
Hum Genomics ; 18(1): 28, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509596

RESUMEN

BACKGROUND: In the process of finding the causative variant of rare diseases, accurate assessment and prioritization of genetic variants is essential. Previous variant prioritization tools mainly depend on the in-silico prediction of the pathogenicity of variants, which results in low sensitivity and difficulty in interpreting the prioritization result. In this study, we propose an explainable algorithm for variant prioritization, named 3ASC, with higher sensitivity and ability to annotate evidence used for prioritization. 3ASC annotates each variant with the 28 criteria defined by the ACMG/AMP genome interpretation guidelines and features related to the clinical interpretation of the variants. The system can explain the result based on annotated evidence and feature contributions. RESULTS: We trained various machine learning algorithms using in-house patient data. The performance of variant ranking was assessed using the recall rate of identifying causative variants in the top-ranked variants. The best practice model was a random forest classifier that showed top 1 recall of 85.6% and top 3 recall of 94.4%. The 3ASC annotates the ACMG/AMP criteria for each genetic variant of a patient so that clinical geneticists can interpret the result as in the CAGI6 SickKids challenge. In the challenge, 3ASC identified causal genes for 10 out of 14 patient cases, with evidence of decreased gene expression for 6 cases. Among them, two genes (HDAC8 and CASK) had decreased gene expression profiles confirmed by transcriptome data. CONCLUSIONS: 3ASC can prioritize genetic variants with higher sensitivity compared to previous methods by integrating various features related to clinical interpretation, including features related to false positive risk such as quality control and disease inheritance pattern. The system allows interpretation of each variant based on the ACMG/AMP criteria and feature contribution assessed using explainable AI techniques.


Asunto(s)
Algoritmos , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Pruebas Genéticas , Aprendizaje Automático , Variación Genética/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética
18.
Mol Ecol ; 33(7): e17308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445567

RESUMEN

Phrynosoma mcallii (flat-tailed horned lizards) is a species of conservation concern in the Colorado Desert of the United States and Mexico. We analysed ddRADseq data from 45 lizards to estimate population structure, infer phylogeny, identify migration barriers, map genetic diversity hotspots, and model demography. We identified the Colorado River as the main geographic feature contributing to population structure, with the populations west of this barrier further subdivided by the Salton Sea. Phylogenetic analysis confirms that northwestern populations are nested within southeastern populations. The best-fit demographic model indicates Pleistocene divergence across the Colorado River, with significant bidirectional gene flow, and a severe Holocene population bottleneck. These patterns suggest that management strategies should focus on maintaining genetic diversity on both sides of the Colorado River and the Salton Sea. We recommend additional lands in the United States and Mexico that should be considered for similar conservation goals as those in the Rangewide Management Strategy. We also recommend periodic rangewide genomic sampling to monitor ongoing attrition of diversity, hybridization, and changing structure due to habitat fragmentation, climate change, and other long-term impacts.


Asunto(s)
Lagartos , Metagenómica , Animales , Filogenia , Colorado , Ecosistema , Lagartos/genética , Variación Genética/genética , ADN Mitocondrial/genética , Filogeografía
19.
Mol Biol Rep ; 51(1): 432, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520570

RESUMEN

BACKGROUND: The future predictions for frequent and severe droughts will represent a significant threat to wheat yield and food security. In this context, breeding has proven to be the most efficient approach to enhance wheat productivity in dry environments. METHODS AND RESULTS: In this study, both agronomic and molecular-based approaches were used to evaluate the response of twenty-eight Tunisian wheat varieties to drought stress. The primary objective was to screen these varieties for drought tolerance using molecular and agro-morphological markers. All varieties were significantly affected by drought stress regarding various traits including total dry matter, straw length, flag leaf area, number of senescent leaves, SPAD value, grain yield and grain number. Furthermore, substantial variability in drought-stress tolerance was observed among wheat genotypes. The cluster analysis and principal component analyses confirmed the existence of genotypic variation in growth and yield impairments induced by drought. The stress susceptibility index (SSI) and tolerance index (TOL) proved to be the most effective indices and were strongly correlated with the varying levels of genotypic tolerance. The genotyping evaluation resulted in the amplification of 101 alleles using highly polymorphic 12 SSR markers, showed an average polymorphism of 74%. CONCLUSIONS: Taken together, the combination of agronomic and molecular approaches revealed that Karim, Td7, D117 and Utique are the most drought-tolerant wheat varieties. These varieties are particularly promising candidates for genetic improvements and can be utilized as potential genitors for future breeding programs in arid and semi-arid regions.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/genética , Fitomejoramiento/métodos , Fenotipo , Biomarcadores , Sequías , Variación Genética/genética
20.
Mol Ecol ; 33(6): e17294, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366327

RESUMEN

Seasonal differences in insect pigmentation are attributed to the influence of ambient temperature on pigmentation development. This thermal plasticity is adaptive and heritable, and thereby capable of evolving. However, the specific genes contributing to the variation in plasticity that can drive its evolution remain largely unknown. To address this, we analysed pigmentation and pigmentation plasticity in Drosophila melanogaster. We measured two components of pigmentation in the thorax and abdomen: overall darkness and the proportion of length covered by darker pattern elements (a trident in the thorax and bands in the abdomen) in females from two developmental temperatures (17 or 28°C) and 191 genotypes. Using a GWAS approach to identify the genetic basis of variation in pigmentation and its response to temperature, we identified numerous dispersed QTLs, including some mapping to melanogenesis genes (yellow, ebony, and tan). Remarkably, we observed limited overlap between QTLs for variation within specific temperatures and those influencing thermal plasticity, as well as minimal overlap between plasticity QTLs across pigmentation components and across body parts. For most traits, consistent with selection favouring the retention of plasticity, we found that lower plasticity alleles were often at lower frequencies. The functional analysis of selected candidate QTLs and pigmentation genes largely confirmed their contributions to variation in pigmentation and/or pigmentation plasticity. Overall, our study reveals the existence and underlying basis of extensive and trait-specific genetic variation for pigmentation and pigmentation plasticity, offering a rich reservoir of raw material for natural selection to shape the evolution of these traits independently.


Asunto(s)
Drosophila melanogaster , Pigmentación , Animales , Femenino , Drosophila melanogaster/genética , Pigmentación/genética , Temperatura , Fenotipo , Genotipo , Variación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...